
DiffPMAE: Diffusion Masked Autoencoders for
Point Cloud Reconstruction

Yanlong Li1, Chamara Madarasingha2, and Kanchana Thilakarathna1

1 The University of Sydney
yali8838@uni.sydney.edu.au kanchana.thilakarathna@sydney.edu.au

2 University of New South Wales
c.kattadige@unsw.edu.au

Abstract. Point cloud streaming is increasingly getting popular, evolv-
ing into the norm for interactive service delivery and the future Meta-
verse. However, the substantial volume of data associated with point
clouds presents numerous challenges, particularly in terms of high band-
width consumption and large storage capacity. Despite various solutions
proposed thus far, with a focus on point cloud compression, upsampling,
and completion, these reconstruction-related methods continue to fall
short in delivering high fidelity point cloud output. As a solution, in
DiffPMAE , we propose an effective point cloud reconstruction architec-
ture. Inspired by self-supervised learning concepts, we combine Masked
Autoencoder and Diffusion Model to remotely reconstruct point cloud
data. By the nature of this reconstruction process, DiffPMAE can be
extended to many related downstream tasks including point cloud com-
pression, upsampling and completion. Leveraging ShapeNet-55 and Mod-
elNet datasets with over 60000 objects, we validate the performance of
DiffPMAE exceeding many state-of-the-art methods in terms of autoen-
coding and downstream tasks considered. Our source code is available at
: https://github.com/TyraelDLee/DiffPMAE

Keywords: Point Cloud compression · Masked Autoencoder · Diffusion
model

1 Introduction

Advancements in immersive multimedia technology, in particular the widespread
availability of devices for generating and consuming 3D visual data, hold tremen-
dous potential for realizing interactive applications and the future Metaverse. In
light of that, point clouds have emerged as a prominent format for volumetric
data facilitating 3D vision. As the use of point clouds continues to soar, various
challenges have already been posed against providing high quality 3D content
primarily due to its complexity which can grow to millions of points bearing
multiple attributes [10]. For example, efficient storage and transmission of point
cloud has recently become a pressing concern [32,38,43] that are exacerbated by
inevitable challenges such as data losses in network, limited storage and band-
width with other competing applications, etc.

https://github.com/TyraelDLee/DiffPMAE
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Fig. 1: DiffPMAE inference process: MAE module first segments the point cloud to
visible and masked regions and provides latent code for visible patches which is taken
as a conditional input for the Diffusion process. DM reconstruct masked regions from
noise which is combined with visible patches.

There are many solutions proposed to date to address these issues such as
point cloud compression algorithms including both statistical (e.g., octree, [16,
23, 30], kd-tree [1, 11, 28]) and deep learning [20, 22, 45, 49]) methods followed
by upsampling [26, 27, 37, 56] to compress the data and reconstructing them
before the user consumption. Though these methods can reduce the bandwidth
and storage consumption, they still lack high fidelity reconstruction at high
compression ratio. In the meantime, different point cloud completion solutions
are proposed to reconstruct point cloud objects with limited available data [53,
58,60]. However, they often fail to generate accurate output, particularly, if the
missing regions of the point cloud are significant and highly random. Hence,
there is a growing demand for efficient models for point cloud reconstruction,
particularly when the available data for a given point cloud object is limited
involving higher levels of compression or data losses.

On the other hand, self-supervised learning (SSL) models have demonstrated
outstanding performance in natural language processing (NLP) through excep-
tional models such as GPT [8], BERT [12] and other models [18,31,39]. SSL for
point clouds has also been proposed focusing particularly on generating miss-
ing point cloud data for a given object, e.g., PointMAE [35], PointM2AE [62],
and [2, 4, 42, 63]. However, these approaches require both encoder and decoder
to be trained together limiting its applicability in point cloud transmission tasks
requiring prior collaboration between client and server. In the meantime, they
do not thoroughly evaluate on the applicability of SSL for point cloud recon-
structions and the related downstream tasks (e.g., compression, upsampling).

To this end, we propose DiffPMAE , a deep learning based self-supervised
point cloud reconstruction architecture that combines Masked Autoencoder
(MAE) with Diffusion Models (DM). Our model segments the point cloud data
to masked-visible patches and then takes latent space of visible patches as the
condition to guide masked token generation (retrieved by our decoder) in the dif-
fusion process as illustrated in Fig. 1. In the meantime, the encoder and decoder
in MAE can be trained separately providing more flexibility in model training
and distributing them in streaming applications. Thus, by the nature of the re-
construction process, the proposed model can easily be extended to point cloud
processing tasks including compression, completion and upsampling. Due to its
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unstructured nature, there is no meaningful geometrical relation between visible
patches of the input point cloud and Gaussian noise which is used as the conven-
tional learning objective in DMs. We overcome these challenges in developing a
robust architecture to effectively leverage the capabilities of Diffusion process.

With comprehensive empirical experiments with pre-training on ShapeNet-
55 dataset and ModelNet validation sets, DiffPMAE outperforms state-of-the-
art generative models. In the autoencoding performance, DiffPMAE achieves
21.9% of average improvement in Minimum Matching Distance Chamfer Dis-
tance (MMD CD) compared with benchmarks. Considering the downstream
point cloud related tasks, DiffPMAE outperforms many other state-of-the-art
methods. For example, in upsampling task, DiffPMAE outperforms recent works
by 31% improvements on average in MMD CD. DiffPMAE also provides a com-
petitive compression ratio along with an average improvement of 67.7% in de-
compression quality and 73.2% average improvement in point cloud completion
tasks in the related metrics.

A summary of our main contributions include:

– We introduce DiffPMAE , a self-supervised learning based model which com-
bines Diffusion Models and MAE models for point cloud reconstruction.

– We demonstrate that the proposed MAE modules are strong in creating non-
trivial latent representations of limited point cloud data that can be used as
conditional input for DMs to reconstruct missing point cloud regions.

– We extend DiffPMAE for various point cloud processing tasks including
point cloud compression, upsampling and completion in which we outperform
various state-of-the-art approaches.

– We extensively validate the DiffPMAE by a thorough ablation study high-
lighting the significance of design strategies taken.

2 Related Work

Self-supervised learning (SSL) aims to learn from the information or struc-
ture of data itself instead of human-labelled data. SSL has been well developed in
NLP, such as GPT [8] and BERT [12]. For point cloud tasks, SSL have also been
researched comprehensively [2, 4, 14, 35, 42, 63]. For example, PointBERT [59]
proposed a BERT-styled approach that segmented and masked input tokens to
predict the masked parts via discrete Variational Autoencoder (VAE). Denoising
Autoencoder (DAE) [5, 48] is a type of autoencoder that aims to enhance the
performance by adding noises to inputs. By extending the idea from DAE, the
MAE [19] replaced the input noise with masked patches. A recent work, Diff-
MAE [51], proposed an approach that replaced the decoder in the MAE with
a diffusion model for the image related works to achieve better results. In com-
puter vision tasks, PointMAE [35] bring the masked autoencoder idea to point
cloud tasks by randomly mask input patches and make predictions on them.
Point cloud related tasks: We identify three main tasks related with point
cloud data that are directly comparable with DiffPMAE namely, point cloud
compression, completion and upsampling. Among statistical approaches for point
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cloud compression, octree [16,23,30] and kd-tree-based compression [1,11,28] are
the most prominent methods, which follows hierarchical compressing approach
by voxelizing the point cloud data. DNN architectures are also proposed to
convert point clouds to low-dimensional latents [20, 22, 49]. In upsampling, re-
lated research has evolved from CNN methods like PU-Net [57] to sophisticated
generative models such as GAN and transformers [26, 37] while increasing the
upsampling performance. In point cloud completion, the folding-based autoen-
coder [55] proposed a two-step decoding that combined the 2D grid with the
3D point cloud data. The coarse to fine autoencoding [24,50,60] has introduced
the two stages of completion, which generates the coarse results first and then
increase the density of coarse low-resolution point clouds.
Diffusion models (DM) are widely studied in 1D and 2D domains [13,21,33,
40,41,44], however, is still a new concept for 3D point cloud generation. The Luo
et al. [29] proposed an autoencoder architecture with a DM as a decoder. The
work in [34] proposes a diffusion-based text and image-conditioned point cloud
generation, but the performance is still insufficient due to the complexity of the
3D data. LION [61] directly works on the latent space to generate 3D shapes.
The work [46] proposed an image-conditioned point cloud generative DM with
the geometrical information to improve the quality.

In contrast, DiffPMAEproposes a SSL based approach which leverage DMs
combining with MAE [35] with transformer architectures for point cloud gen-
eration. We further show how it can be extended for various downstream tasks
including point completion, compression and upsampling.

3 Methodology

3.1 Overview of DiffPMAE

Fig. 2 illustrates the end-to-end process of DiffPMAE. As the first step, we pre-
train an Encoder module Eϕ which first segments original point cloud object
into visible and masked patches. Then, these regions are passed through a Token
layer that generates a tokenized output for the patches before feeding them to a
Transformer encoder.

Next, we train a DM which iteratively adds noise in the forward process
until the input point cloud object with only masked patches becomes completely
Gaussian noise. Then, we perform a denoising process starting from Gaussian
random noise to the expected point cloud in T steps.

3.2 Encoder module

Segmentation layer. We denote the input point cloud as P ∈ RN×3 with
three dimensional (x, y, z coordinates) N number of points. We first use the FPS
(Farthest Point Sampling) algorithm to determine centre points for G number
of groups, and then we use the K-nearest neighbourhood (K-NN) algorithm to
find points for each corresponding group. After segmenting, we randomly split
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Fig. 2: Overall structure for DiffPMAE containing the MAE and DM module. During
training, the encoder module will be trained first. The pre-trained encoder will be used
to encode the point cloud input to latent code for diffusion model training.

the segmented patches into masked patches Pm ∈ RNm×3 and visible patches
Pv ∈ RNv×3, where Nm and Nv are number of points in respective segments. We
denote the mask ratio r as the proportion of masked points. The segmentation
layer generates two other outputs vectors: (i) centre points C ∈ RG×3 for each
patch, and (ii) a binary indicator b ∈ {0, 1}G whether the patch is masked or
not as the meta data for decoding. We feed centre points to a simple NN layer
to receive position embedding that will be an input to the Transformer encoder.
Token layer. Pm and Pv patches from the Segmentation layer are fed to a
token layer to convert them to a latent code before a transformer module. Ex-
perimentally we observed that such latent output which is rich in extracted patch
features can enhance the Transformer performance. Here, the Token layer is a
simple convolutional neural network module providing L long 1D latent code for
each patch in Pv and Pm.
Transformer. We use a standard transformer but without a decoder [47].
We input the latent space from the token layer and the corresponding position
embedding to this transformer to generate the latent code of the visible patches.
Here, the position embedding are the encoded representation of centre points
from segmentation layer through simple linear NN layer. In order to control the
range of latent code, we add normalization layer after the transformer.
Training the Encoder. To pre-train our Encoder separately from the Decoder
in the diffusion process (see Section 3.3), we apply an extra fully connected layer
(FC layer) directly after the Transformer. That layer will convert encoded latent
to point clouds that can be used to calculate the loss compared with the ground
truth. Here, we select Chamfer Distance-L2 as the loss function [15] as in Eq. 1.
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Lsampling = CD L2(Eϕ(P ), P ) (1)

where Eϕ(P ) is the output of our Encoder module (after the fully connected
layer) and P is the ground truth point cloud. All the trainable parameters in
the above components are trained together.

As we do not add decoder parts during this training, the speed of the train-
ing can be accelerated. Note that by splitting the Encoder and the Decoder, we
expect 2 main advantages. First our encoder model can be fine-tuned for perfor-
mance improvement or other downstream tasks, such as upsampling, agilely by
training the Encoder or the Decoder independently. Second, pre-trained encoder
provides stable conditional inputs to the DM process. The trained Encoder has
three main vector outputs namely, i) Encoded visible latent with size {|Pv|, L}
where |Pv| is the size of visible patches, L is the latent length, ii) Centre points
C and iii) Binary mask indicator from Segmentation layer as shown in Fig. 2.

3.3 Diffusion process

We train a DM as the Decoder of DiffPMAEwhich takes the Encoder output as
the conditional input for DM and the output from the Encoder for each point
cloud model is fixed. The backbone network for predicting the reverse diffusion
process is an encoder-only Transformer combined with other key modules below.
Time embedding. This layer provides a unique embedding for each time step
in the diffusion sequence which allows the Decoder transformer to learn the
temporal relation and handle the time sequence. At each time step t, we extract
a corresponding sinusoidal position which is then converted to a time embedding
through a simple NN layer.
Mask Token layer. This layer converts different noise distributions in the
diffusion process to a latent space while controlling the number of masked patches
according to the binary mask indicator from the Encoder. This helps to keep a
constant number of samples in the output and perfectly aligns the masked and
visible patches, which has a noticeable impact on the overall performance of the
DM. The size of input noise distribution for the Mask Token layer is Nm × 3,
where Nm is the number of masked points. By default, our model processes
2048-sized input point cloud (i.e., Pm + Pv) with r = 0.75 mask ratio resulting
in Pm = 1536. The size of output from the mask token layer is {|Pm| × L}.
Transformer. We follow a transformer architecture in the Decoder similar to
that in the Encoder. However, in the Decoder transformer, we add normalization
layers between each block to control the range of the intermediate outputs from
the block and accelerate the convergence speed. The input of this Transformer
is a {G × L} vector. That input vector concatenates the masked latent from
the Mask token layer and the visible latent from the Encoder. The output from
this Transformer is a predicted masked latent. Additionally, we connect an FC
layer to the last block in the transformer, which converts the output from the
transformer to a point cloud object.



DiffPMAE 7

3.4 Training the diffusion model.

Given an original training sample x0 ∼ p(x0), the masked and visible samples are
denoted by xm

0 ∈ Pm and xv
0 ∈ Pv respectively. The main task of our diffusion

process is to sample xm
0 conditioned by E(xv

0), which is the encoded visible
patches received from the pre-trained encoder. In the forward pass, we recursively
add a small amount of Gaussian noise on xm

0 until T times creating a sequence
of xm

0 ,xm
1 ,xm

2 , ..., xm
T . We treat this process as a Markov process as in Eq. 2

q(xm
t |xm

t−1) = N (xm
t ;

√
1− βtx

m
t−1, βtI) (2)

where t ∈ [1, 2, 3, ..., T ] is the timesteps and βtI is the variance of the noise at
t. Following the properties of a Gaussian distribution we can convert Eq. 2 to
Eq. 3 by removing the recursion for simplified operation by denoting αt = 1−βt

and αt =
∏t

i=1 αi

q(xm
t |xm

0 ) = N (xm
t ;

√
αtx

m
t−1, (1− αt)I) (3)

A reparameterization can convert Eq. 3 to
√
αtx

m
0 +

√
1− αtϵ where ϵ ∼

N (0, I). With a small β at each step, we can assure xm
T ∼ N (0, I).

In the reverse process, we aim to get distribution q(xm
t−1|xm

t , E(xv
0)) step

by step to recover the input from xm
T ∼ N (0, I). However, sampling from

q(xm
t−1|xm

t , E(xv
0)) is not an easy task without knowing the entire diffusion

process. Therefore, we train the Decoder module with transformers to learn
p(xm

t−1|xm
t , E(xv

0)) to get the conditional probabilities approximately to infer
the entire reverse diffusion process. Unlike standard DM, which predicts Gaus-
sian noise as the objective, DiffPMAE uses xm

0 as the objective. This is because
standard Gaussian noise does not maintain any geometrical relationship with
visible features. To get the xm

0 during sampling, we train a deep learning model
to learn the distribution of xm

0 as xm
rec at timestep t with the condition E(xv

0).
Here, xm

rec is the output from the Decoder at each time step.
As a result, the sampling process can be presented as below, where σt = 1−αt.

q(xm
t−1|xm

t , xm
0 , E(xv

0)) =

(

√
αt(1− αt−1)

1− αt
xm
t +

√
αt−1βt

1− αt
xm
rec) + σtx

m
rec

(4)

We extend the optimisation of the simple objective proposed by DDPM [21].
We use the Chamfer Distance-L2 as the loss function, which leads to better
results for 3D point cloud tasks as in Eq. 5.

Lsampling = CD L2(D(xm
t , t, Eϕ(x

v
0), x

m
0 ) (5)

where Eϕ is the Encoder function and D denotes the Decoder module.
We test two Decoder configurations that change the model output, i) Config.

1 : Predict only the Pm from the DM. In this scenario, the mask token layer
provides tokens to represent only the masked patches, ii) Config. 2 : Predict
both Pm and Pv, which is useful for upsampling task (see Section 4.3). In this
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configuration, tokens are generated to represent both masked and visible patches
from the mask token layer.

4 Experiments and Results

4.1 Evaluation setup

Dataset. We use ShapeNet-55 [9](55 categories, 52470 models) and Model-
Net40 [52] (40 categories, 12311 models) for train and validation of the models.
We downsampled the models to lower density to support upsampling tasks and
to match the number of points in benchmark models from literature for a fair
comparison. Each point cloud object is divided into 64 groups (G) in equal size.
Important model details and hyper-parameters. The default transformer
encoder module contains 12 blocks. Each block includes 6 heads, and the latent
width (L) is 384. The default transformer in the Decoder consists of 4 blocks with
4 headers in each block and the latent width is 384. The default mask strategy
is randomly masking, and the default mask ratio (r) is 75%. The timestep (T )
for the diffusion process is 200 steps, and the range of β is 10−4 to 0.05. More
details will be released with artefacts.
Evaluation metrics. We use 4 main metrics for the evaluation: i) MMD CD
(Minimum Matching Distance Chamfer Distance) [3]: matches every points be-
tween two objects for the minimum distance (MMD) and report the average
of distances in the matching using point-set distance, ii) 1-NN CD (1-Nearest
Neighbor Chamfer Distance) [29]: finds the nearest neighbour in the ground
truth set using the K-NN algorithm, then calculates the distance between two
point clouds. It reflects the overall generation performance, iii) JSD (Jensen-
Shannon divergence) [54]: assesses the similarity between the generated result
sets and ground-truth sets on geometrical distribution, and iv) HD (Hausdorff
Distance) [6]: computes the HD on each pair of generated results and ground
truth and then calculates the average.

4.2 Autoencoding performance

We evaluate the autoencoding performance of DiffPMAE comparing with bench-
marks on ShapeNet-55 dataset. The benchmarks we use are PointMAE [35], and
PointM2AE [62] which are the most related and recent works comparable to the
MAE architecture in our method.

Fig. 3 visually compares the DiffPMAE with PointMAE, and PointM2AE.
We notice that after 200 steps of reverse diffusion, our model can generate more

Model MMD CD (×10−3) JSD (×10−3) HD (×10−2)
PointMAE [35] 1.752 53.108 4.193
PointM2AE [62] 1.224 1.948 4.033

Ours 1.125 2.890 3.445
Table 1: Comparison of point cloud autoencoding performance.
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Fig. 3: Qualitative comparison of DiffPMAE, PointMAE and PointM2AE. t = 0 is the
final output from DiffPMAE that combines visible parts and predicted masked parts.
The r for all methods is 75%.

Mask ratio (r) Metrics FoldingNet [55] PCN [60] PoinTr [58]* Snowflake [53] Ours (w/o pos)** Ours (w/ pos)**

40% MMD 6.675 4.881 - 1.602 2.144 1.197
HD 9.467 8.388 - 3.534 3.494 2.586

50% MMD 7.535 5.041 - 2.149 2.696 1.432
HD 9.987 8.535 - 3.919 4.295 3.125

60% MMD 8.971 5.303 - 2.932 3.250 1.647
HD 10.789 8.773 - 4.411 5.022 3.598

75% MMD 14.596 6.227 7.368 5.056 4.403 1.901
HD 13.419 9.537 6.515 5.697 6.363 4.193

80% MMD 19.344 6.945 - 6.321 4.995 2.126
HD 15.288 10.063 - 6.246 6.874 4.650

Table 2: Comparison of point cloud completion performance with two configuration
of DiffPMAE ; with and without position embedding. MMD CD results are in ×10−3,
HD results are in ×10−2. *The pre-trained model provided by PointTr only works at
75% loss ratio in our experiments. ** The position embedding refers to the position for
MAE, which differs from the position embedding in DMs.

uniform distributed point cloud samples compared to both benchmarks and keep
local details in complex point cloud objects (chair: row 2 and table row-8) more
precisely. This is mainly due to the iterative sampling process introduced by
DMs that can identify subtle feature variations in point cloud objects. Table. 1
reports a statistical summary of the comparison using MMD CD, JSD and HD
metrics. We observe that DiffPMAE outperforms all the methods in terms of
MMD CD and HD values achieving 1.125 and 3.445 lowest values respectively.
However, DiffPMAE shows comparably lower performance in JSD mainly due to
the higher uniformity in point cloud distribution which can be slightly deviated
from ground truth data.

4.3 Downstream tasks

Point cloud completion. Based on the nature of masking of the point cloud,
DiffPMAE can be used in point cloud completion tasks as well. To evaluate that,
we fine-tune our Encoder model by removing the position embedding on the
ShapeNet dataset and evaluating it on the ModelNet dataset. We compare Diff-
PMAE with existing point cloud completion models that are shown in Table 2
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under two configurations; with (w/ pos) and without (w/o pos) position embed-
ding, which is a conditional input from the encoder. For PoinTr, Snowflake and
our model, we use point clouds with randomly missing content, which further
increases the difficulty of the recovery task. We set the r to 40, 50, 60, 75 and
80% reflecting different levels of point cloud loss.

According to Table 2, DiffPMAE with position embedding achieves the best
results in all different r settings and is also noticeably better than without posi-
tion embedding. Except for Snowflake, DiffPMAE outperforms all other bench-
marks. In Snowflake, we observe that MMD CD and HD scores are slightly bet-
ter than DiffPMAE without position embedding when the loss ratio is less than
75%. This is because Snowflake is originally designed for point cloud completion,
therefore, it can achieve better performance when the r is small. However, the
completion task is more like generation when the loss ratio is above 75%. Hence,
DiffPMAE achieves better results with a high loss ratio showing its promise for
completion tasks. NOTE: we also test on PCN dataset in the supplementary.
Upsampling. We run the DM in Config. 2 in which we sample both masked
and visible patches together(see Section 3.3). We first train our pre-trained model
for 100 epochs on ShapeNet for Config. 2 and then fine-tune the model on high-
density ShapeNet for 50 epochs. During fine-tuning the model, we fixed the
weight in the transformer and modified the structure of the prediction head. For
the upsampling task, our model takes 2048 points model as input and generates
8192 points model. We evaluate our model’s performance on PU1K dataset [36],
which has been used by the benchmark models we compare DiffPMAE with.

Table 3 reports upsampling performance measured by MMD CD score. We
see that DiffPMAE outperforms all other methods showing the lowest MMD CD
value, 0.423. The main reason is DiffPMAE effectively learns the local features
by using masking and the DM, which is more powerful in learning local features,
can sample the points at a higher fidelity to original point cloud data. Moreover,
our model only needs a part of the low density point cloud model (25% - 60%
of number of points only) to achieve high-fidelity up-sampled output.
Compression. In DiffPMAE we masked r ratio of point cloud data which
indirectly implies that DiffPMAE has the potential for compressing point cloud
data. For example, with the default masking ratio, it is equivalent to compressing
the point cloud data by 75%. Streaming point cloud data is a direct use case
of this downstream task where we can send only the visible patches from the
Encoder to the client, rather than sending the entire point cloud data.

Metrics PU-Net 3PU PU-GCN Dis-PU PU-Transformer PU-Edgeformer Ours Ours
[57] [56] [36] [27] [37] [25] (w/ 25% Input) (w/ 60% Input)

MMD CD 1.155 0.935 0.585 0.485 0.451 0.462 0.461 0.423(×10−3)
HD 15.170 13.327 7.577 4.620 3.843 3.813 5.130 4.487(×10−3)

Table 3: Comparison of point cloud upsampling performance.



DiffPMAE 11

As we experimentally observe that latent code for visible patches from the
Encoder is relatively larger in size, we do not store or transmit this vector to avoid
reducing compression gains. Alternatively, we propose to have a new Encoder
which takes only the visible patches by changing the current Encoder (Fig. 2)
removing the segmentation layer. For example, in a point cloud streaming ap-
plication, the client will have this trained Encoder so that the received visible
data can be used to derive visible latent code without transmitting through the
network. Note that we still use the current encoder, for example, at the content
server according to the above streaming application, to derive centre points and
masked binary vector required for DM. We use the bpp (bits per point) [7] and
mean Chamfer Distance [3] to evaluate the compression ratio and the decoded
point cloud quality. We compare DiffPMAE with existing point cloud compres-
sion approaches based on ShapeNet dataset.

Table 4 shows that DiffPMAE does not achieve the highest compression ratio.
However, it can achieve relatively high compression ratio and keep the highest-
fidelity output at the same time. This reveals that DiffPMAE is ideal for point
cloud stream or data storing tasks by achieving a competitive compression ratio
with state-of-the-art decoding performance. In this experiment, we directly use
partial point cloud data which can be further compressed by standard libraries.
Therefore, the compression gain by DiffPMAE can be further increased. This
will be kept as a future work while relating to point cloud streaming tasks.

Metrics Draco [1] MPEG [30] G-PCC [17] D-PCC [20] Ours
bpp 4.51 4.29 3.10 0.75 3.38
CD 0.0011 0.0010 0.0010 0.0032 0.0004

Table 4: Comparison of point cloud compression performance.

4.4 Ablation study

Loss function input. We discover that the different loss function settings based
on the inputs we use, can create noticeable differences in performance. Thus, in
the training phase, we use two different settings for the loss calculation: a) Entire
point cloud object as the input: we combine the predicted masked parts from the
last step of our DM and the input visible parts, then compute loss with initial
point cloud, b) Only masked region as the input: we directly use the predicted
masked parts to compute loss with masked parts from initial point cloud. We
have denoted the results under different masked ratios in Table 5.

Overall, we notice that the best results are achieved under Setting (a) when
predicting both visible and masked patches by the model (e.g., Setting (a) with
r=75% & masked+visible output). This is because, when training under Set-
ting (a), we use the entire object as the ground truth in the loss function, which
leads the model to learn distributions more uniformly. However, such uniform
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Fig. 4: Visualization of different mask ratios

distribution causes Setting (a) to perform worse than Setting (b) when it is
used only the masked parts to assess the performance (e.g., r =40–80% with
Setting (a)). Setting (b) is better performed with masked-only assessments, es-
pecially when the mask ratio is low due to the availability of more visible patches.
Mask ratio (r). In default configurations, DiffPMAE decoder predicts only the
masked patches. Hence, to avoid the visible patches affecting the performance
evaluation, we mainly evaluate the generated masked patches only in Table 5,
which is denoted as masked only. Interestingly, the optimum mask ratio of our
DiffPMAE is 75%, which is relatively a higher value. Despite the availability
of more visible patches, lower r values show higher values in all the metrics
considered. This is because DM learns features from ground truth of masked
patches and uses visible patches as guidance to generate masked patches only.
Hence, a lower r reduces the features for the DM to learn and results in de-
creased performance. Fig. 4 visualizes predicted output for different mask ratios
which emphasizes the same observation where, the higher the mask ratio, the
more uniformly distributed and higher quality reconstruction. Further analysis
of impact of r on prediction will be done as future work.
Mask Strategy. We now assess the generation performance of our model on
different masking strategies. We trained our model with a 75% mask ratio on

Mask ratio Evaluation output Setting (a): Entire point cloud object Setting (b): Only masked regions
MMD CD 1-NN CD JSD HD MMD CD 1-NN CD JSD HD

40% masked only 6.187 15.869 6.636 8.902 2.373 0.244 70.119 10.950
50% masked only 4.564 11.230 5.358 7.727 2.208 0.488 72.155 9.124
60% masked only 3.720 5.126 4.935 7.035 2.052 0 74.463 7.970
65% masked only 3.420 4.150 4.610 6.750 2.018 0.244 75.927 7.496
70% masked only 3.146 3.662 4.441 6.503 1.989 0.244 76.868 7.092
75% masked only 2.847 3.906 4.129 6.208 1.947 0.244 77.906 6.622
80% masked only 2.660 4.882 3.960 6.031 1.944 0.976 79.337 6.347
75% masked+visible 1.125 1.464 2.890 3.445 1.669 18.798 50.017 4.122
80% masked+visible 1.187 2.929 2.958 3.641 1.756 24.414 56.229 4.356

Table 5: Ablation study on mask ratio and loss functions. MMD CD, 1-NN CD, JSD
results are ×10−3, HD results are ×10−2. All means combined the predicted masked
patches and the visible patches from the GT.



DiffPMAE 13

Random selection of visible patch Block selection of visible patch

Fig. 5: Different Mask Strategies fro r = 75% The random mask strategy is on the
left. The block mask strategy is on the right.

two masking strategies: i) random: Randomly selecting masked and visible parts
based on the given mask ratio after segmentation. ii) block : Masking a large block
that contains multiple continuous and consecutive patches. We have visualized
results with different mask strategies in Fig. 5. As we benefit from the robust
inference and generation capabilities of our decoder, D, we observe no noticeable
difference in the performance of our model on block and random strategies.
We further verify this observation statistically in Table 6, where we report less
difference in the measured values, particularly in MMD CD and HD values.
Group setting. We observe that number of groups (G) and the samples in
each group (N) has a direct impact on the DiffPMAE performance. Because the
K-NN and the FPS algorithms cannot avoid overlapping points, which results
in loss of details. Table 7 shows different group configurations along with their
measured statistical performance of Decoder output. The best performance is
achieved with the configuration G64 N32 which we consider as a fair balance
between the G and N . Considering the other settings, G32 N64 can loss details
after segmentation significantly due to the shorter fixed latent length we used.
Similarly, for G128 N16 setting, there are too many patches to process and the
latent length is also wasted for 16 points.
Latent width. The width of the latent space represents the amount of detail
that the point cloud can retain in the latent space. Therefore, a larger latent
space allows the model to capture more features. However, following the increase
of the width of latent space, the corresponding resources are also required to
increase (i.e., in our experiment, we faced insufficient VRAM when we trained
our model with a bigger latent width). To explore that relationship, we discuss
the performance of our model with different latent widths in Table 8. We use 12
encoder blocks and four decoder blocks; each encoder block contains six heads,
and each decoder block contains four heads by default. The mask strategy for this
experiment is random, and the mask ratio is 75%. During the training, we train
our encoder for 50 epochs and decoder for 300 epochs. This experiment uses three

Strategy MMD CD (×10−3) 1-NN CD (×10−3) JSD (×10−3) HD (×10−2)
Random 1.125 1.464 2.890 3.445
Block 1.051 0.976 3.493 3.321

Table 6: Ablation study on mask strategies.
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Group MMD CD (×10−3) 1-NN CD (×10−3) JSD (×10−3) HD (×10−2)
G32 N64 1.441 10.009 4.527 3.920
G64 N32 1.125 1.464 2.890 3.445
G128 N16 1.604 18.798 192.245 3.609

Table 7: Ablation study on group settings.

different latent space widths: 192, 384, and 768. As shown in Table 8, our model
performs noticeably better when the latent space width is 384 and 768 than the
model with 192 latent widths. However, we do not observe significant differences
between the width = 384 and 768. That means our model can learn and produce
outstanding results by using a limited latent space without excessively increasing
the latency width to cause excessive consumption of resources.
NOTE: we also evaluate our model on inference speed and diffusion timestep.
Please refer to the supplementary for details.

5 Discussion and Limitation

In the current segmentation process of DiffPMAE, we observe a slight overlap
between the visible and masked patches due to the nature of K-NN+FPS algo-
rithms. This can potentially result in unexpected detail loss of the point cloud
data. While overlapping-free algorithms like point pairwise are inefficient for
complex data, we aim to find more effective approaches in the future. In addi-
tion, we aim to apply DiffPMAE on more complex point cloud datasets (e.g.,
LIDAR) to further generalize DiffPMAE on different applications.

6 Conclusion

We proposed a novel method, DiffPMAE that leverages a self-supervised learn-
ing approach by combining Masked Autoencoding (MAE) and Diffusion Models
(DMs) for point cloud reconstruction tasks. The model first converts a given
point cloud object to masked and visible regions. Then these visible regions are
converted to latent code MAE modules which are taken as conditional input to
the DMs for point cloud reconstruction. We further extend DiffPMAE for differ-
ent point cloud related tasks including point cloud compression, upsampling and
completion in which it exceeds the state-of-the-art methods in-terms of quality
of reconstruction. In Future work, we aim to further explore the applicability of
DiffPMAE for real-time streaming and compression tasks.

Latent Width MMD CD (×10−3) 1-NN CD (×10−3) JSD (×10−3) HD (×10−2)
192 1.370 9.277 33.283 3.852
384 1.125 1.464 2.890 3.445
768 1.043 0.488 3.576 3.356

Table 8: Ablation study on latent width.
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