Supplementary materials for DiffPMAE

Yanlong Li¹, Chamara Madarasingha², and Kanchana Thilakarathna¹

¹ The University of Sydney yali8838@uni.sydney.edu.au kanchana.thilakarathna@sydney.edu.au ² University of New South Wales c.kattadige@unsw.edu.au

1 Further Evaluations: Real-world scanned dataset

To evaluate the generalization ability of our work, we perform extra experiments on the ScanObjectNN dataset [4], which contains 2902 unique 3D point cloud objects in 15 categories scanned from real-world objects. We evaluate our model separately on the main split of the ScanObjectNN dataset with background and without background. We take three experiments with different settings of DiffPMAE on both with background split and without background split: i) pre-trained model, which is the pre-trained on ShapeNet dataset with default configurations (refer to Section 4.1 in our main paper); *ii*) train from sketch model, the *DiffPMAE* with default configurations trained on ScanObjectNN training set from sketch; *iii*) fine-tuned on ScanObjectNN, the pre-trained DiffPMAE with extra training on ScanObjectNN training set with default configurations. We show the evaluation results with a background in Table 1; it reports that the pre-trained *DiffPMAE* model can achieve competitive generation results even without any fine-tuning on ScanObjectNN dataset. Fig. 1 visualizes generated results of three DiffPMAE models. Table 2 reports the evaluation results without background. Due to objects in this split without background, some objects are incomplete, which is more complex than the main split with the background. Hence, *DiffPMAE* models perform a bit worse than the split with the background. We visualized the generated results of different DiffPMAE models in Fig. 2. Overall, *DiffPMAE* can achieve competitive performance on the more complex real-world dataset even without fine-tuning. Those experiments demonstrate the generalization ability of *DiffPMAE*.

Models	MMD CD (×10 ⁻³)	JSD $(\times 10^{-3})$	HD $(\times 10^{-2})$
pre-trained model	1.120	5.814	3.417
train from sketch model	1.685	119.881	4.080
fine-tuned with pre-trained model	1.244	9.505	3.535

 Table 1: Reconstruction results for DiffPMAE on ScanObjectNN dataset main split

 with background.

2 Y. Li et al.

Models	1-NN CD (×10 ⁻³)	JSD (× 10^{-3})	HD (× 10^{-2})
pre-trained model	1.131	5.934	3.355
train from sketch model	1.300	197.363	3.486
fine-tuned with pre-trained model	1.314	71.022	3.693

 Table 2: Reconstruction results for DiffPMAE on ScanObjectNN dataset main split without background.

2 Further Evaluation: Validation of Completion on PCN dataset

	Metrics	PCN	SnowFlake	P2C [1]	Ours	
	MMD CD	5.22	2.32	1.22	1.49	
Table 3: Con	nparison or	n PCN	I dataset. N	IMD CD	results are	$\times 10^{-3}$.

In Table. 3, we also show the comparison with other models on PCN dataset [5]. Performance of DiffPMAE and P2C are close but P2C is slightly better than ours. We emphasize that completion is only one of our downstream tasks, therefore, with further fine-tuning, DiffPMAE could achieve further improvements for completion, which we keep in future work.

3 Further Evaluation: Inference speed

Our model can produce around 4 items/sec on a one RTX3080 with the default setting. We tested the inference speed with different t settings in Table 4. To allocate the computational resource effectively, we also test the parallel sampling with default setting (t = 200) by setting the batch size to 32. With that setting, our model can produce 31 items/sec.

	t = 100, batch size $= 1$	t = 200, batch size $= 1$	t = 300, batch size $= 1$	t = 200, batch size $= 32$
items/sec	8.22	4.08	1.89	31.03
Table 4. Informance around for different t acting				

 Table 4: Inference speed for different t settings.

4 Further Ablation: Diffusion Timestep

To measure the impact of timestemp t on diffusion process, we set timestep t=50, 100, 200, 300. We kept other hyperparameters as default as in Section 4.1

in our main paper. According to Table 6, *DiffPMAE* performs best at t = 200. However, further increase in t reduces the quality of the process in all metrics considered. The main reason is that with the increase of t, the required number of epochs should also be increased which is not scalable. Hence, we select t = 200 in *DiffPMAE* which significantly reduces time consumption compared to other point cloud generation methods [2,3,6] that requires t around 1000.

t	MMD CD $(\times 10^{-3})$	$1-NN CD (\times 10^{-3})$	$JSD (\times 10^{-3})$	HD (× 10^{-2})
t = 50	1.474	11.718	4.527	3.891
t = 100	1.449	12.939	117.491	3.713
t = 200	1.125	1.464	2.890	3.445
t = 300	1.506	8.544	71.055	3.842
		, <u>c</u> 1. c .		

 Table 5: Impact of diffusion timestep.

5 Further Ablation: Validation of Diffusion Model Parameters

We perform further ablation study with 300 diffusion steps with different parameters alongside the diffusion timestep experiments in our main paper. We show results with different setups in Table 6. We first extend the training process by increasing 300 epochs to 600 epochs. Then, we test a more complex decoder configuration with 8 depths and 6 headers. We also test the different ΔT values that control the diffusion process. However, none of those configurations with t = 300 can beat the default configuration of our model with t = 200. Those experiments further prove that our work can achieve better results with a more simple structure with t = 200, and those experiments also prove our method is efficient. Compared with prior diffusion-based works like PVD [7], our work only requires 200 steps to generate high-fidelity results instead of 1000 steps.

Model configurations	MMD CD $(\times 10^{-3})$	1-NN CD ($\times 10^{-3}$)	JSD $(\times 10^{-3})$	HD (× 10^{-2})
t = 200	1.125	1.464	2.890	3.445
t = 300	1.506	8.544	71.055	3.842
t = 300(e = 600)	2.128	46.386	138.907	4.891
t = 300(d = 8, h = 6, e = 600)	1.792	26.367	64.276	4.427
$t = 300(d = 8, h = 6, e = 600, \Delta T = 0.02)$	1.653	15.869	22.556	4.251

Table 6: Impact of different model configurations for DiffPMAE. t is number of diffusion steps, e is number of training epochs, d is number of depth in decoder, h is number of header in decoder.

6 Qualitative Results: Visualizations

In this section, we present further evidence for the quality of results for reconstruction and upsampling tasks that were presented in the main paper. For 4 Y. Li et al.

reconstruction tasks, we use the trained DiffPMAE with the default configuration and parameters in our main paper. For upsampling tasks, we use the trained DiffPMAE for upsampling correspondingly (See Section 4.3 Upsampling part in our main paper). Fig. 3 shows the reconstruction results of DiffPMAE, with both input ground truth and output predicted results of 2048 points. Fig. 4 shows the upsampling results of DiffPMAE; the input size is 2048, and the output size is 8192.

7 Diffusion code

In this section, we provide a simple diffusion code of DiffPMAE. The full code repo can be find in our main paper.

```
Reverse sampling at timestep t
                                         Input noisy level at timestep t,
return noisy level at timestep t-1.
5
6
7
8
9
10
11
12
13
14
15
16
                                        B, _, C = x_vis.shape # B VIS C
ts = self.time_emb(t.to(x_vis.device)).unsqueeze(1).expand(-1, self.num_group, -1)
betas_t = self.get_index_from_list(self.betas, t, noisy_t.shape).to(x_vis.device)
                                        pos_emd_vis = self.decoder_pos_embed(center[~mask]).reshape(B, -1, C)
pos_emd_msk = self.decoder_pos_embed(center[mask]).reshape(B, -1, C)
pos_full = torch.cat([pos_emd_vis, pos_emd_msk], dim=1)
_, N, _ = pos_emd_msk.shape
mask_token = self.mask_token(noisy_t.reshape(B, N, -1).transpose(1, 2)).transpose(1,
) to rest_end_vise1
                                  mask_token = seif.mask_token(noisy_t.resmape(b, m, -1/,transport, -1/,transp
17
18
19
20
21
22
                                   alpha_bar_t = self.get_index_from_list(self.alpha_bar, t, noisy_t.shape).to(x_vis.device)
alpha_bar_t_minus_one = self.get_index_from_list(self.alpha_bar_t_minus_one, t,
noisy_t.shape).to(x_vis.device)
sqrt_alpha_t = self.get_index_from_list(self.sqrt_alphas, t, noisy_t.shape).to(x_vis.device)
sqrt_alphas_bar_t_minus_one = self.get_index_from_list(self.sqrt_alpha_bar_minus_one, t,
rists = thereal bar_t_minus_one = self.get_index_from_list(self.sqrt_alpha_bar_minus_one, t,
23
24
                                   noisy_t.shape).to(
x_vis.device)
\begin{array}{c} 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 50\\ \end{array}
                                        sigma_t = self.get_index_from_list(self.sigma, t, noisy_t.shape).to(x_vis.device)
                                       . == 0:
return model_mean
else:
                                                        return model_mean + torch.sqrt(sigma_t) * x_rec
                            def sampling(self, x_vis, mask, center, trace=False, noise_patch=None):
                                         Sampling the masked patches from Gaussian noise.
                                         B, M, C = x_vis.shape
                                        if noise_patch is None:
    noise_patch = torch.randn((B, (self.num_group - M) * self.group_size, 3)).to(x_vis.device)
diffusion_sequence = []
                                        for i in range(0, self.timestep)[::-1]:
    t = torch.full((1,), i, device=x_vis.device)
    moise_patch = self.sampling_t(noise_patch, t, mask, center, x_vis)

                                                        if trac
                                                                    diffusion_sequence.append(noise_patch.reshape(B, -1, 3))
51
52
53
54
55
                                        if trace:
return diffusion_sequence
else:
                                                        return noise_patch.reshape(B, -1, 3)
```

References

- 1. Cui, R., Qiu, S., Anwar, S., Liu, J., Xing, C., Zhang, J., Barnes, N.: P2c: Selfsupervised point cloud completion from single partial clouds (2023)
- 2. Kalischek, N., Peters, T., Wegner, J.D., Schindler, K.: Tetrahedral diffusion models for 3d shape generation (2022)
- Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for generating 3d point clouds from complex prompts (Dec 2022)
- Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, D.T., Yeung, S.K.: Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data. In: International Conference on Computer Vision (ICCV) (2019)
- Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion network. In: 2018 International Conference on 3D Vision (3DV). pp. 728–737 (2018)
- Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.: Lion: Latent point diffusion models for 3d shape generation. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems. vol. 35, pp. 10021-10039. Curran Associates, Inc. (2022), https://proceedings.neurips.cc/paper_files/paper/2022/file/ 40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf
- Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel diffusion. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 5826–5835 (2021)

Ground TruthVisible patchesPre-trained modelTrain from sketch modelFine-tuned modelFig. 1: Reconstruction results of DiffPMAE on ScanObjectNN dataset, main split with
background. The predicted results are generated by DiffPMAE with mask ratio 0.75.

7

Fig. 2: Reconstruction results of DiffPMAE on ScanObjectNN dataset, main split without background. The predicted results are generated by DiffPMAE with mask ratio 0.75.

Fig. 3: Reconstruction results of *DiffPMAE* with multiple categories. Input point cloud and predicted results are 2048 points. The predicted results are generated by *DiffPMAE* with mask ratio 0.75.

Fig. 4: Upsampling results of DiffPMAE with multiple categories. Input low resolution point clouds are contains 2048 points, high resolution and generated results are contains 8192 points. Our model is trained based on pairs of Hi-res GT and Lo-res GT and use Visible parts to generate the Hi-res predicted results. The predicted results are generated by DiffPMAE with mask ratio 0.4.