
Supplementary materials for DiffPMAE

Yanlong Li1, Chamara Madarasingha2, and Kanchana Thilakarathna1

1 The University of Sydney
yali8838@uni.sydney.edu.au kanchana.thilakarathna@sydney.edu.au

2 University of New South Wales
c.kattadige@unsw.edu.au

1 Further Evaluations: Real-world scanned dataset

To evaluate the generalization ability of our work, we perform extra experiments
on the ScanObjectNN dataset [4], which contains 2902 unique 3D point cloud
objects in 15 categories scanned from real-world objects. We evaluate our model
separately on the main split of the ScanObjectNN dataset with background
and without background. We take three experiments with different settings of
DiffPMAE on both with background split and without background split: i)
pre-trained model, which is the pre-trained on ShapeNet dataset with default
configurations (refer to Section 4.1 in our main paper); ii) train from sketch
model, the DiffPMAE with default configurations trained on ScanObjectNN
training set from sketch; iii) fine-tuned on ScanObjectNN, the pre-trained
DiffPMAE with extra training on ScanObjectNN training set with default con-
figurations. We show the evaluation results with a background in Table 1; it re-
ports that the pre-trained DiffPMAE model can achieve competitive generation
results even without any fine-tuning on ScanObjectNN dataset. Fig. 1 visual-
izes generated results of three DiffPMAE models. Table 2 reports the evaluation
results without background. Due to objects in this split without background,
some objects are incomplete, which is more complex than the main split with
the background. Hence, DiffPMAE models perform a bit worse than the split
with the background. We visualized the generated results of different DiffPMAE
models in Fig. 2. Overall, DiffPMAE can achieve competitive performance on the
more complex real-world dataset even without fine-tuning. Those experiments
demonstrate the generalization ability of DiffPMAE .

Models MMD CD (×10−3) JSD (×10−3) HD (×10−2)
pre-trained model 1.120 5.814 3.417

train from sketch model 1.685 119.881 4.080
fine-tuned with pre-trained model 1.244 9.505 3.535

Table 1: Reconstruction results for DiffPMAE on ScanObjectNN dataset main split
with background.

2 Y. Li et al.

Models 1-NN CD (×10−3) JSD (×10−3) HD (×10−2)
pre-trained model 1.131 5.934 3.355

train from sketch model 1.300 197.363 3.486
fine-tuned with pre-trained model 1.314 71.022 3.693

Table 2: Reconstruction results for DiffPMAE on ScanObjectNN dataset main split
without background.

2 Further Evaluation: Validation of Completion on PCN
dataset

Metrics PCN SnowFlake P2C [1] Ours
MMD CD 5.22 2.32 1.22 1.49

Table 3: Comparison on PCN dataset. MMD CD results are ×10−3.

In Table. 3, we also show the comparison with other models on PCN dataset
[5]. Performance of DiffPMAE and P2C are close but P2C is slightly better than
ours. We emphasize that completion is only one of our downstream tasks, there-
fore, with further fine-tuning, DiffPMAE could achieve further improvements for
completion, which we keep in future work.

3 Further Evaluation: Inference speed

Our model can produce around 4 items/sec on a one RTX3080 with the default
setting. We tested the inference speed with different t settings in Table 4. To
allocate the computational resource effectively, we also test the parallel sampling
with default setting (t = 200) by setting the batch size to 32. With that setting,
our model can produce 31 items/sec.

t = 100, batch size = 1 t = 200, batch size = 1 t = 300, batch size = 1 t = 200, batch size = 32
items/sec 8.22 4.08 1.89 31.03

Table 4: Inference speed for different t settings.

4 Further Ablation: Diffusion Timestep

To measure the impact of timestemp t on diffusion process, we set timestep
t=50, 100, 200, 300. We kept other hyperparameters as default as in Section 4.1

Supplementary materials for DiffPMAE 3

in our main paper. According to Table 6, DiffPMAE performs best at t = 200.
However, further increase in t reduces the quality of the process in all metrics
considered. The main reason is that with the increase of t, the required number
of epochs should also be increased which is not scalable. Hence, we select t = 200
in DiffPMAE which significantly reduces time consumption compared to other
point cloud generation methods [2, 3, 6] that requires t around 1000.

t MMD CD (×10−3) 1-NN CD (×10−3) JSD (×10−3) HD (×10−2)
t = 50 1.474 11.718 4.527 3.891
t = 100 1.449 12.939 117.491 3.713
t = 200 1.125 1.464 2.890 3.445
t = 300 1.506 8.544 71.055 3.842

Table 5: Impact of diffusion timestep.

5 Further Ablation: Validation of Diffusion Model
Parameters

We perform further ablation study with 300 diffusion steps with different param-
eters alongside the diffusion timestep experiments in our main paper. We show
results with different setups in Table 6. We first extend the training process by
increasing 300 epochs to 600 epochs. Then, we test a more complex decoder
configuration with 8 depths and 6 headers. We also test the different ∆T values
that control the diffusion process. However, none of those configurations with
t = 300 can beat the default configuration of our model with t = 200. Those
experiments further prove that our work can achieve better results with a more
simple structure with t = 200, and those experiments also prove our method is
efficient. Compared with prior diffusion-based works like PVD [7], our work only
requires 200 steps to generate high-fidelity results instead of 1000 steps.

Model configurations MMD CD (×10−3) 1-NN CD (×10−3) JSD (×10−3) HD (×10−2)
t = 200 1.125 1.464 2.890 3.445
t = 300 1.506 8.544 71.055 3.842

t = 300(e = 600) 2.128 46.386 138.907 4.891
t = 300(d = 8, h = 6, e = 600) 1.792 26.367 64.276 4.427

t = 300(d = 8, h = 6, e = 600,∆T = 0.02) 1.653 15.869 22.556 4.251
Table 6: Impact of different model configurations for DiffPMAE . t is number of diffu-
sion steps, e is number of training epochs, d is number of depth in decoder, h is number
of header in decoder.

6 Qualitative Results: Visualizations

In this section, we present further evidence for the quality of results for re-
construction and upsampling tasks that were presented in the main paper. For

4 Y. Li et al.

reconstruction tasks, we use the trained DiffPMAE with the default configu-
ration and parameters in our main paper. For upsampling tasks, we use the
trained DiffPMAE for upsampling correspondingly (See Section 4.3 Upsampling
part in our main paper). Fig. 3 shows the reconstruction results of DiffPMAE ,
with both input ground truth and output predicted results of 2048 points. Fig.
4 shows the upsampling results of DiffPMAE ; the input size is 2048, and the
output size is 8192.

7 Diffusion code

In this section, we provide a simple diffusion code of DiffPMAE . The full code
repo can be find in our main paper.

1 class Diff_Point_MAE(nn.Module):
2 def sampling_t(self , noisy_t , t, mask , center , x_vis):
3 """
4 Reverse sampling at timestep t.
5 Input noisy level at timestep t,
6 return noisy level at timestep t-1.
7 """
8 B, _, C = x_vis.shape # B VIS C
9 ts = self.time_emb(t.to(x_vis.device)).unsqueeze (1).expand(-1, self.num_group , -1)

10 betas_t = self.get_index_from_list(self.betas , t, noisy_t.shape).to(x_vis.device)
11
12 pos_emd_vis = self.decoder_pos_embed(center [~mask]).reshape(B, -1, C)
13 pos_emd_msk = self.decoder_pos_embed(center[mask]).reshape(B, -1, C)
14 pos_full = torch.cat([pos_emd_vis , pos_emd_msk], dim =1)
15 _, N, _ = pos_emd_msk.shape
16 mask_token = self.mask_token(noisy_t.reshape(B, N, -1).transpose (1, 2)).transpose(1,

2).to(x_vis.device)
17 x_full = torch.cat([x_vis , mask_token], dim =1)
18 x_rec = self.MAE_decoder(x_full , pos_full , N, ts)
19 x_rec = self.increase_dim(x_rec.transpose (1, 2)).transpose(1, 2).reshape(B, -1, 3)
20
21 alpha_bar_t = self.get_index_from_list(self.alpha_bar , t, noisy_t.shape).to(x_vis.device)
22 alpha_bar_t_minus_one = self.get_index_from_list(self.alpha_bar_t_minus_one , t,

noisy_t.shape).to(x_vis.device)
23 sqrt_alpha_t = self.get_index_from_list(self.sqrt_alphas , t, noisy_t.shape).to(x_vis.device)
24 sqrt_alphas_bar_t_minus_one = self.get_index_from_list(self.sqrt_alpha_bar_minus_one , t,

noisy_t.shape).to(
25 x_vis.device)
26
27 model_mean = (sqrt_alpha_t * (1 - alpha_bar_t_minus_one)) / (1 - alpha_bar_t) * noisy_t + (
28 sqrt_alphas_bar_t_minus_one * betas_t) / (1 - alpha_bar_t) * x_rec
29
30 sigma_t = self.get_index_from_list(self.sigma , t, noisy_t.shape).to(x_vis.device)
31
32 if t == 0:
33 return model_mean
34 else:
35 return model_mean + torch.sqrt(sigma_t) * x_rec
36
37 def sampling(self , x_vis , mask , center , trace=False , noise_patch=None):
38 """
39 Sampling the masked patches from Gaussian noise.
40 """
41 B, M, C = x_vis.shape
42 if noise_patch is None:
43 noise_patch = torch.randn((B, (self.num_group - M) * self.group_size , 3)).to(x_vis.device)
44 diffusion_sequence = []
45
46 for i in range(0, self.timestep)[:: -1]:
47 t = torch.full ((1,), i, device=x_vis.device)
48 noise_patch = self.sampling_t(noise_patch , t, mask , center , x_vis)
49 if trace:
50 diffusion_sequence.append(noise_patch.reshape(B, -1, 3))
51
52 if trace:
53 return diffusion_sequence
54 else:
55 return noise_patch.reshape(B, -1, 3)

Supplementary materials for DiffPMAE 5

References

1. Cui, R., Qiu, S., Anwar, S., Liu, J., Xing, C., Zhang, J., Barnes, N.: P2c: Self-
supervised point cloud completion from single partial clouds (2023)

2. Kalischek, N., Peters, T., Wegner, J.D., Schindler, K.: Tetrahedral diffusion models
for 3d shape generation (2022)

3. Nichol, A., Jun, H., Dhariwal, P., Mishkin, P., Chen, M.: Point-e: A system for
generating 3d point clouds from complex prompts (Dec 2022)

4. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, D.T., Yeung, S.K.: Revisiting point cloud
classification: A new benchmark dataset and classification model on real-world data.
In: International Conference on Computer Vision (ICCV) (2019)

5. Yuan, W., Khot, T., Held, D., Mertz, C., Hebert, M.: Pcn: Point completion network.
In: 2018 International Conference on 3D Vision (3DV). pp. 728–737 (2018)

6. Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., Kreis, K.:
Lion: Latent point diffusion models for 3d shape generation. In: Koyejo, S., Mo-
hamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neu-
ral Information Processing Systems. vol. 35, pp. 10021–10039. Curran Associates,
Inc. (2022), https://proceedings.neurips.cc/paper_files/paper/2022/file/
40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf

7. Zhou, L., Du, Y., Wu, J.: 3d shape generation and completion through point-voxel
diffusion. In: Proceedings of the IEEE/CVF international conference on computer
vision. pp. 5826–5835 (2021)

https://proceedings.neurips.cc/paper_files/paper/2022/file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/40e56dabe12095a5fc44a6e4c3835948-Paper-Conference.pdf

6 Y. Li et al.

Fig. 1: Reconstruction results of DiffPMAE on ScanObjectNN dataset, main split with
background. The predicted results are generated by DiffPMAE with mask ratio 0.75.

Supplementary materials for DiffPMAE 7

Fig. 2: Reconstruction results of DiffPMAE on ScanObjectNN dataset, main split
without background. The predicted results are generated by DiffPMAE with mask
ratio 0.75.

8 Y. Li et al.

Fig. 3: Reconstruction results of DiffPMAE with multiple categories. Input point cloud
and predicted results are 2048 points. The predicted results are generated by DiffPMAE
with mask ratio 0.75.

Supplementary materials for DiffPMAE 9

Fig. 4: Upsampling results of DiffPMAE with multiple categories. Input low resolution
point clouds are contains 2048 points, high resolution and generated results are contains
8192 points. Our model is trained based on pairs of Hi-res GT and Lo-res GT and
use Visible parts to generate the Hi-res predicted results. The predicted results are
generated by DiffPMAE with mask ratio 0.4.

	Supplementary materials for DiffPMAE

